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1. Introduction

The concept of stress is‘well defined through the primitive concepts of force
and area-vector, Such is not ;he case with stfain for which displacerment-gradients
have to be used,with the result that we find various measures of it used in
literature, In particular we have measures due to Cauchy, Green, Hencky, Almansi,
Swainger and Wall. 7The classical theory of elasticity employs the Cauchy
measure when the strain 1s small and only linear terms in displacement gradients
referred to the unstrained state are retained. The theory of finite deformation uses
the Almansi or Green measure, Hencky's measure is useful in plasticity. Swainger
uses linear displacement gradients but referred to the strained state, Wall
combines some of these measures to get new ones, It may therefore be of some
interest to suggest a generalized strain mrasure which includes all of them as
particular cases,

In general it is difficult to find stress-strain tensor relations sujtable for

giving good quantitative results. The generalized strain meazure can indicate

how a particular resuit may be extended for obtaining better agreement with

% Sponsored by the Mathematics Reszarch Center, United States Army, M.adison,
Wisconsin, under Contract No. DA-11-022-ORD-2059,
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experimental data., Tt may be possible to derive these improved rasu
taking the elastic coastants as functions of strain invarjants and not as absolute
constants. Thus a rcasonable justification may Le obtained for a number of ad hoc
empirical formulac used in literature., We may also find that the recent tendency

to use new coeificients of the medium may not be pursued in all cases.

2. Genearalized Strain Measure

As the strain tensor gij is symmetric we may assovciate it with a quadric

surface, known as Cauchy's ctrain quadric, at any point P, such that

i)

&, X x =a constant . (2.1)

If A i be its principal axes and a and x, are the coordinates before and after

strain we may writc

2 2 Z
= {
nday = Ndx/AL . (2. 2)
Any suitable function of é"l which vanishes for ./_\i = 1 when there is no deformation
may constitute a measure of strain, If we put
-1
A=(-ng V", (2. 3)

we notice that it includes all the known measures. In fact we have zhe following

results:
n=-1, A=1+4+g, Cauchy(C)
1 =
ns=-2, {&_:(1+29_)2, Green (G)

n=0, A=exp(e) ,1Hencky (H)

3 (z.4)
n=2, A=(-~2¢) , Almansi ()

n=1, A=(- e)"1 , Swainger (§)_

n=o, A =1, Nostrain ()
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We can therefore call n the coefficient of strain measure and .A as a generalized

strain measure, The strain components of the measures in (2. 4) have been

calculated by Cauchy, Green (1), Murnaghan (2), Reiner and Hanim (3) and others.

Seth (4) has stressed the use of the A - measure in a number of applications,

We shall now illustrate the uce of the generalized strain measure by a few

examples, In the case of simple shecr it will be shown that Rivlin's (5) result

that no two of the normal stresses may be equal can be obtained without using

any addiiicnal elastic constant,

3. Homogeneous Pure Strain

In this case the displacement is given by

g 0 0
‘.‘!‘ = g }é ? g = 0 Q-Z 0
0 0 93J
The principal pure strains are:
Ll _l, - 1
€157 -8 ) 8= fmgy)y g4y= ll-g
The strain invariants aie;
1 -n
I= n (- Zgi ) s
1 -n -n _
M=772 Jl-g )l-g), 1#), 4,i=1,23
m = =4 (1- g0 - M - g
n 3

The cubical dilatation ¢, = (v/vo-l), is

-1/n

(1 -nl+ nZII - n3III) -1,

(3.1)

(3.2)

(3.3)

(3. 4)
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Forn =0, which is H - measure, it takes the simpler form exp(l) - 1. For

N - measure it is obviously zero, as it should be.

s, e T P

We now treat the cases of simple tension, hydrostatic pressure, simple
shear and yield condition,

Ty Y

In each case the results given by using generalized

strain and a linear stress-strain tensor relation involving two elastic constants

are extended and then justified by taking the elastic constants as functions of the

strain invariants.

4, (@Generalized Tension-Stretch Law

In this case g =g, and from (3.1) and (3. 2) we get

L
- 2
1-gM = s -3m2)
=3 3
. The tension-stietch law is found cto be governed by the equation( )
1 -n
T =ZE1-1+977 , (4.2)

when E is Young's modulus and s is the ordinary s‘retch of the classical theory.

For ___1_\___ - measure n = 2 and we get the result due to Seth(4) . F.om (4,2)

we derive the following conclusion, not given by the classical theory.

(i) A vield point is indicated at T = E/n .

(ii) Tension and compression results are not similar.

(i11) For infinite compression s— =~ 1, T - -, thus showing that no
amount of stress can reduce the length to zaro,

e
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(iv) ds © —(;.+§)n+1

This is equal to E only at s = 0; otherv.ise the strain increases much

S ST D TR0 20l B

¢ et

faster thau stress in tension,
From (4, 1) we see that the yield point occurs at T = i E, which is a very high

value if the classical value of E is used. It should therefore be generalized,
An obvious extension of it is

1.
T =A[1—a+—§)-aj , (4.3)

where A and a are constants to be adjusted. A can now represent the yield

siress ,3 and a can be taken as E/,f} .

Comparing (4. 2) with (4, 3) we see that we can obtain this later form if we

take E as given by

l-c—ol
E = nA ——2
-n

b-g, 1 (4. 4)

= aA[l -%(a--n){ 122(1° - 311)2} +...]

As a first approximation E = aA ; in general it can be taken as a function of the

strain invariants I and II.

5. Hydrostatic Pressure

In this ~ase all the ¢'s are equal and the pressure~-volume relation is found

to be 1
_ 3k o 3"
p= =) 7 -1] . (5. 1)

(@)

For A - measure it reduces to Murnaghan's' ' result, which gives ve.y good

(6
agreement with Bridgeman 's )result on ‘he compression of sodium at high vressures,
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Here k is the ordinary coefficient of cubical expansion. To get better agreement

with results at very high pressures,which may be of the order of 20,000 atmospheres,

Murnaghan, without giving any justification, generalized (5. 1) into

v0 Q
p=A[() -11, (5.2)
and determined A and a from Bridgeman's experimental data. We can readily see

invariant I

that (5.2) can be derived from (5.1) if k is taken as a suitable function of the
1. From (3.2) we have

3 -n 3
I=30-8), e = v/, .
Hence
1 (vo/V) -1
k = gpA——17 7T
(vo/V)3
A 1 .\3
- &0 - 0 -hep*/y

(5. 3)
= Au[l—'é'(3o.-n)1+.,. 1,

which is a type of e..,,ansion sometimes used for k and which is similar to (4. 4).

In general this expa ~ion is not valid, but k remains a function of I.

6. Simple Shear

In this case ¢ is given by

[1

c =0
0

o
o

o -
—

Pollowing Love @)

and Reiner we find the following values of the principal strains:
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§ e e = i[l-2%a+gP2c} ™™ (6.1)
| =11°=22 n ? *
b
L £330 -
}
) v The generalized strain components are then given by
= s
. 21 L L 2,2
S &y T 2@ T ) 2 o) ey me))
i (6.2)
e =(4+c2)2(e -e_ ), 2 e e =0
Xy = =11 =227 Fzz' Tz2x’ ~yz
For A - these reduce t =0, e -—lcz e -lC'for
A -measure these c °oe. = » &y T 728 &y T 3E5
G - measure they become ¢ =0, e = -l'c'2 s = - lc. Inall other measures
= XX =yy 2= =xy 2=
e +#0,
“xx

The stress components are given by

=Ale +e + 2ue
1xx (—xx —yy) “—xx

= A + 2 + 2pn e
Iy =D&y tay)tne
(6. 3)
. IZZ=A(§xX4e y)+2p'ezz
=2 - .
=Xy 'Lgxy v —yz!? —z2x 0

(1)

Thus we get normal stresses which give rise to Kelvin and Poynting effects,
In both cases such stresses have to be applied to keep the body in equilibrium,
As e x is zero only in A -and G - measures, the normal stresses Tx and
T,, are generally unequal, as pointed out by Rivlin(s) . We obtain this result

without using any additional elastic coefficient. From (6. 3) we see that the

normal stresses can e taken in the form
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Ty = Pngyn * By gy
1
Mi . on 2,2, |-

=T[1-2 {(44c) " +c} ] {6. 3)

Bii,, _.n 22 .n

t—[1-2"{(44¢) "-c} ]
For A - and G-measures we get Iy proportional to _g_z as has been

found by Rivlin ) , Truesdell(l), Green(s) and others.

The shearinyg stress Ixy is given by

1
S (270 ey Ml (R N 6. 4
—-xXy n 1 ¢

(4-l~c?')'2

1
For A - measure it takes the simple form 'z-c .

The results in (6. 3) and (6, 4) may be generalized by replacing - n with a

and a justification on the lines given in Sections 5 and 6 may be given,

7. Generalized Strain in Hollow Spheres and Cylinders

For the symmetrical deformation of a thick spherical shell subjected to

uniform internal and external pressures, the radial displacement, strain components

and the stress components are given by(4)

u = r{(l - P)

1 n ln (7.1)
_grr=;[1—P{l+v(v+2)}'] ,
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S5 (7. 2)
Sro? Zpp 0 Zor = 0
T= SA[3 - 22" - B + B0 - P
IR NEE-VERE SR & D SRS
Tro  Top ? Tre =0 (@.3)
dp 2n

where V = % ar f(v)=[l+v(v+2)]2

. P may be determined from a

non-linear differentia! equation resulting from the body-stress equations. At

present we shall obtain a yield condition from (7. 3) and show that it holds good

in all strain measures,

From (7. 3) we have,on eliminating p?

Y _ 2p[l - £(v)] (7. 4)
3A+2p.-n'rrr 2A+ 2£(v) + 21 £(V) :

If r' is the radius vector before strain, we have

L
r'=rpP |

(7.5)
dr' |
and ar = P(1 + v)

These show that v —» - 1 for infinite extension and v - © for infinite comprese

From (7. 4) we thus get the inequality

n(r -1 ) -
_l-20 o _Tw —ee  l-20 (7.6)
l ~¢ 3A+2u-n7 20

Thus,whatever the generalized strain may be and whatever values A and
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(constant or variable) may have the yield condition in extension or compression
may be written as

Ty -

TW) +A1(1rr -IM) +A2(;3'_ + T
when A

+T. )
1

= k
o —od 1
and A2 are independent of n.

(7.7)
Assuming that

xr_ -

T >
!T"") L

we may write the generalized yield condition in the form

T4 =F,(0, IL, 1D
Fy

(7.8)
and F, being functions of the invariants I, II, and II, and =,,, T,,, T4,
the principal stresses in descending order of magnitude.

The yield condition i1 (7, 8) is true for isotropic and aelotropic materials
and for all measures of strain,

If the mean stress is negligible we get

Ty "I33= Fy

(7.9)
which is a generalized form of Tresca's yield conditior,

Similar results may be obtained from the case of hollow cylinders.
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Summary -~

All the known strain measures can be represented by the generalized strain
measure (1 -n _e)-l/n where n may be called the coefficient of strain measure.
Any stress-strain tensor relation cannot give a comriete quantitative picture,
The result obtained by using any one of them will hava to be generalized to con-
form to experimental data. The generalization may be justified by assuming the
coefficients of the medium to be functions of the strai: invariants, The intro-

duction of new coefficients of the medium may therefore be not found nec:ssary

in many cases.
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